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locating the time between events or collisions and advanc-
ing the system to the next event.Molecular dynamics simulation techniques for systems inter-

acting with discontinuous potentials are discussed. Optimization Due to the simplicity of its time integration, DMD offers
and efficiency techniques are summarized for performing discontin- the opportunity to explore phenomena that occur on long
uous molecular dynamics on serial computers with direct applica- time scales using relatively inexpensive hardware. Evention to polymer-like fluids. Comparisons are presented for two

though long-time phenomena can be studied using continu-algorithms: (1) single-event scheduling, and (2) multiple-event
ous potentials ( which are efficient on vector supercomput-scheduling. The single-event scheduling algorithm is approximately

75% faster than the multiple-event scheduling algorithm for molecu- ers) this is not always practical due to the small time steps
lar fluids but yields equivalent performance for atomic fluids. For involved and the unfavorable economics associated with
the single-event scheduling method, a combination of link lists and

large allocations of machine time. In contrast, the DMDneighbor lists are used when searching for possible particle interac-
method can cover large time domains on less expensivetions. The combination of efficiency techniques permits multibillion

time step simulations for relatively large systems on desktop work- desktop workstations and workstation clusters. Recent ad-
stations. Both discontinuous molecular dynamics codes for single vances in the speed and performance of serial computers
and multiple-event scheduling algorithms are available on the In- makes simulation of large systems interacting with discon-
ternet. The utility of the method is demonstrated for entangled

tinuous potentials attractive for investigating phenomenachains, tethered chains, and heteronuclear chain mixtures. Q 1997
operating on time scales that cover many orders in magni-Academic Press

tude. Furthermore, the development of low-cost, high-
speed memory makes treatment of large systems possible

I. INTRODUCTION on most workstations. Nevertheless, efficient algorithms
are required if results are to be achieved in a timely

One of the most popular techniques for simulating the manner.
properties of large systems of molecules is molecular dy- To illustrate the power of using DMD for investigating
namics (MD). The trajectories of systems with 102–106

long-time phenomena, we consider its application to the
atoms are followed on the computer by repeatedly solving dynamics of polymeric fluids which are characterized by a
Newton’s equations of motion. Macroscopic properties of spectrum of relaxation times due to their large molecular
the system are computed by taking averages of instanta- size. The DMD method was first applied to polymeric fluids
neous properties as the system evolves through time. There by Rapaport [1, 2] for the study of polymer chain dynamics
are essentially two types of molecular dynamics simula- in solution. Many of the fascinating properties of polymeric
tions: (1) continuous molecular dynamics, in which the fluids are dictated by the topology and volume of the chain
force acting on a molecule is the spatial gradient of a molecule which can be easily captured in a simple tangent
continuous potential energy field, (e.g., the Lennard-Jones hard-sphere or pearl necklace model. Using the tangent
potential) and (2) discontinuous molecular dynamics hard-sphere model as a basis, Rapaport introduced small
(DMD), in which the force acting on a molecule is impul- links between adjacent beads along the chain to partially
sive and the potential energy field is discontinuous (e.g., the decouple the motion of bonded beads. This decoupling
hard-sphere potential). In continuous molecular dynamics, technique allows the chain system to be treated in a fashion
the equations of motion are solved numerically at regularly similar to hard-sphere molecular dynamics which was origi-
spaced time intervals using finite difference techniques. In nally developed by Alder and Wainwright [3]. The addition
DMD, the equations of motion are solved analytically by of sliding links to the tangent hard-sphere model creates

a bond-extension collision which maintains the connectiv-
ity of the chain. The bond-extension collision is treated in* Corresponding author.
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a manner which is fundamentally identical to a square- to that point in time, computing the event dynamics, and
repeating the process. Instead of taking uniform time steps,well interaction.

The main purpose of this paper is to provide a summary the conventional practice for continuous potentials, DMD
programs use variable time steps and, for this reason, areof techniques developed for DMD and to offer suggestions

for improving the efficiency of codes designed to investi- also referred to as event-driven molecular dynamics.
The key steps in a DMD simulation are the calculationgate slowly relaxing systems (e.g., polymeric fluids) on

workstations. To this end, we compare two algorithms of the collision times, tij , between particles i and j, and the
calculation of the postcollisional velocities for the collidingwhich differ in their treatment of neighbor interactions

and in the method for scheduling events in the system. pair [6, 7]. The collision time between particles i and j is
given byThe multiple-event scheduling algorithm uses subcells for

interaction consideration and a doubly linked binary tree
for event-scheduling. The single-event scheduling algo-

tij 5
2bij 6 Ïb2

ij 2 v2
ij(r2

ij 2 s 2)
v2

ij
, (1)rithm uses a dual-structured neighbor list and a simple

binary tree. The single-event method yields a 75% increase
in performance over the multiple-event method for poly-

where rij 5 ri 2 rj is the relative position, vij 5 vi 2 vj ismeric models while both methods yield similar perfor-
the relative velocity, and bij 5 rij ? vij . The minimum of allmance for hard-sphere fluids. Increased performance is
possible collision times is the next collision time tc . Eachbeneficial for studying transport phenomena, where corre-
particle is advanced by tc to a new position given bylations must be averaged over long times. Both codes are

available on the Internet (http://turbo.che.
ri(t 1 tc) 5 ri(t) 1 vitc , (2)ncsu.edu/smithsw/) for the benefit of research work-

ers interested in using models with discontinuous poten-
where ri and vi are the particle position and velocity. Attials.
this point in the simulation a single pair of particles are inWe have organized the paper as a tutorial, starting with
contact and about to undergo an elastic collision whilethe basics of DMD as applied to hard-sphere systems and
all the other particles remain separated. Postcollisionalculminating in the implementation of the Rapaport model
velocities velocities are calculated by imposing the con-for polymeric fluids. Section II provides a brief description
straints that both kinetic energy and linear momentum areof the basic DMD method for hard-sphere systems. Section
conserved for the smooth, spherical particles.III details DMD techniques for polymeric fluids using the

Rapaport model. Section IV summarizes efficiency tech-
niques from the literature as well as new modifications to III. CHAIN DYNAMICS
the single-event scheduling approach. Section V discusses
numerical accuracy and compares computational perfor- Rapaport [1, 2] pioneered an algorithm to simulate hard

chains by allowing the distance between bonded spheresmance for the single-event and multiple-event scheduling
algorithms. In Section VI we illustrate the versatility of to freely vary over a range between s and (1 1 d)s, where

d is small compared to one. The chain is composed of nthe DMD method for systems containing entangled chains,
heteronuclear chains, and tethered chains. spheres or mers of diameter s attached to each other in

a necklace fashion by sliding links. Bonded spheres of a
chain can also be thought of as being attracted by an infi-II. DISCONTINUOUS MOLECULAR DYNAMICS
nitely deep square-well potential of width equal to ds. As
d approaches zero, the Rapaport model becomes equiva-The first molecular dynamics simulations were per-

formed by Alder and Wainwright [3–5] who took advan- lent to the tangent hard-sphere model. Thus, adjacent
spheres along the chain experience two types of intramo-tage of the fact that the equations of motion for a hard-

sphere potential can be solved analytically. In the absence lecular collisions; first, an elastic hard-core collision at a
distance of s, and second, a bond-extension collision atof a potential field, a particle trajectory is linear, and the

particle moves with constant velocity until a collision oc- (1 1 d)s when the sliding link is fully extended. These
two events constitute the bond vibration for the chain fluidcurs. A collision, or event in broader terms, occurs when-

ever the separation between two particles becomes equal [8]. Bellemans et al. [9] proposed a natural extension of
the Rapaport model in which the reduced bond length,to a point of discontinuity in the potential, which, for the

hard sphere case, is just the particle diameter s. When l/s, is allowed to vary between (1 2 d) and (1 1 d) with an
average close to 1. This allows direct comparison betweensuch an event occurs, the particle velocity will change in

accordance with the dynamics of the model under study. Monte Carlo (MC) results for the tangent hard-sphere
chain and the MD results of the Rapaport model. Den-A DMD simulation evolves on an event-by-event basis by

locating the next event in the system, advancing the system linger and Hall [8] found good agreement between MC and
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MD results for compressibility factors using the Rapaport
model. Chapela and Martinez [10, 11] observed quantita-
tive agreement for fluid structure between the tangent
hard-sphere model and the Rapaport model.

Since the bonded spheres are partially decoupled in the
Rapaport algorithm, linear trajectories for the individual
segments are restored. As a result, collision times and
postcollisional velocities are the same as for the hard-
sphere case. The only difference is that an additional com-
putation is required for the bond-extension time. The bond

FIG. 1. Time list structure for (a) multiple-event and (b) single-eventstretch is treated as a bounce-type collision [1, 4, 5] in an
scheduling, where tk represents the collision time for particle k and jk isinfinitely deep square-well potential. A disadvantage of
the partner involved in that collision. Primes denote multiple events for

the Rapaport algorithm is the large effort spent monitoring the same particle.
the bond vibrations [9] whose computational expense in-
creases as 1/d.

Creating initial configurations for chain fluids at high The multiple-event time lists are structured in the form of
two matrices as illustrated in Fig. 1a: the first contains eventdensity is always a challenging problem. Chain dimensions

increase considerably as the volume fraction decreases due times and the other contains the corresponding partner for
that event. The ith row of the time matrix contains theto excluded volume effects. The Rapaport model provides

a natural way to achieve high volume fractions which are event times ti for several possible events involving particle
i. The ith row of the partner matrix contains the particleof interest for liquid-state simulations. Chains can be grown

from a random walk at low densities and relaxed to insure index, j, of the partner that may collide with particle i at
time ti . The primes denote multiple events for that particle.proper statistics. From this relaxed state, the volume frac-

tion is increased by slowly growing the segment diameters The stored event times in each row may or may not be
ordered in accordance with their event time. Certainly, anwhile the simulation progresses. At prescribed intervals,

all segment diameters are increased by an amount equal ordered row will minimize the effort to find the next colli-
sion time in the system. The number of events Ne (i.e.,to the minimum separation between any two particles in

the system. A bond-extension event is the most obvious number of columns) stored for each particle will vary with
an average of approximately five for the hard-sphere fluidpoint in the simulation to increase segment diameters since

no two particles are in direct contact as would be the case at liquid-like densities.
When updating a multiple event time-list, only new colli-in a core-collision event. Since all chain segments change

size in the growth step, collision times must be recalculated sion times need to be recomputed for the particles i and
j that have just collided. Furthermore, due to the velocityto avoid the possibility of missed events. The maximum

bond length is increased along with the segment diameter change in i and j, all other stored events that involve either
particle i or j must be discarded from the time list. This isuntil the desired volume fraction is achieved.
done by searching through the time list for any events

IV. EFFICIENCY TECHNIQUES involving i or j and simply removing that event. Direct
removal of these events is possible because multiple events

A. Time Lists
have been stored for each particle. In other words, the loss
of a single event from any row in the time matrix does notEfficient algorithm design eliminates unnecessary calcu-

lations to achieve the highest possible performance. The require renewal of the entire row since other stored events
in the row are still valid. For i and j, time list renewal ismost computationally expensive part of the DMD method

is the location of the next event because it involves accomplished by searching for possible interactions be-
tween particle i and the other N 2 1 particles, and betweenN(N 2 1)/2 calculations of event times where N denotes

the number of particles in the system. The inefficiency of particle j and the other N 2 1 particles such that row i and
row j of the time list are completely refreshed. As a result,this calculation stems from recomputing many of the same

event times at each iteration. Alder and Wainwright [4] the multiple-event time list reduces computational work
for collision time determinations at each iteration fromrealized that efficiency could be improved by: (1) storing

event times of soon-to-occur events for each particle in N(N 2 1)/2 to 2(N 2 1). The next time step tc for the
system would be obtained by searching the time matrixtime lists for later use, and (2) subtracting the next event

time tc from these previously stored values to avoid recalcu- for the minimum value.
An alternative approach, proposed by Allen [6], is tolation. By using multiple-event time lists, only new event

times involving the colliding pair, i and j with the other only store the soonest-to-occur event with its partner in a
‘‘single-event’’ time list. Since only a single event is storedN 2 1 particles need to be recomputed at each iteration.
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for each particle, the size and overhead associated with ners to neighboring particles. By restricting this search to
nearest neighbors, the computational effort required tothe time list is minimized. The shortest of all possible event

times ti for particle i is stored in the ith row of the time- update the time list is dependent only upon the number
of neighbors, which in turn, depends on fluid density. Inlist vector while the corresponding partner for that collision

is stored in the ith row of the partner vector as shown in the subcell method, introduced by Erpenbeck and Wood
[12], a cell table technique is employed to divide the pri-Fig. 1b. The next time step tc for the system would be

obtained by searching the time vector for the minimum mary simulation cell into smaller subcells. The search for
possible events is restricted to particles in the 27 subcellsvalue.

Single-event time lists significantly reduce memory re- surrounding the subcell containing a given particle.
The approach taken here is to construct a neighbor listquirements and simplify the maintenance of the time list

structure. While single-event time lists reduce storage re- [13] that contains the index number of all particles within
a spherical shell of radius rn surrounding any given particle.quirements from 2NNe to 2N, computational requirements

increase because particles that were destined to collide with Thus, when particle i experiences a collision, only collision
times between particle i and particles in the neighbor listi or j (had i and j not changed direction) must also be

updated at each time step. These extra updates are neces- of i need to be considered for possible interactions. The
neighbor lists must be updated before any particle cansary because only one event is stored per particle in the

single-event time list. At each iteration, approximately two diffuse further than (rn 2 s)/2. An optimum shell radius
rn exists because larger shells (i.e., more neighbors) requiremore particles (in addition to i and j) must be updated.

However, by constructing the single-event time list so that more effort to update the time lists and smaller shells
require that the neighbor lists be updated more often.the collision partner of i is always greater than i, only half

(on the average) of the possible interactions need to be Our studies suggest that an optimal neighbor list contains
between 30–35 neighbors for liquid-like densities (volumeconsidered for the two extra updates at each time step.

This upward construction naturally eliminates double fraction .0.3) using a hard-sphere potential. Since the
hard-sphere potential is a short-ranged potential and thechecking of interactions and allows minimal effort for time-

list updates. The single-event time list update is divided integration of the equations of motion is exact, the trajec-
tory accuracy is not affected by neighbor list radius unlessinto two routines: the first checks for possible interactions

with all particles greater than i(uplist), and the second collisions are overlooked due to limited interaction consid-
erations from a very small neighbor list. The optimal valuefor those less than i(dnlist). As a result, the computa-

tional work associated with the time list update in single- (30–35) is only slightly larger than the value determined
by using the first shell of neighbors (26) in a simple cubicevent scheduling is actually on the order of 3(N 2 1) which

is only 50% more than the multiple-event method. lattice arrangement of the particles. Frequency of neighbor
list updates depends on the system dynamics, with slowlyWhen employed in simulations of polymers based on

the Rapaport model, time list techniques can also be used diffusing systems requiring fewer updates. Neighbor list
expiration is checked by periodically calculating particleto reduce the frequency of the bond or square-well interac-

tion calculations. In this case, the time list will not only displacements. Neighbor lists are renewed if the measured
displacement exceeds a safe limit (i.e., (rn 2 s)/2.5) whichcontain core-collision events but also bond-extension and

square-well events. For each particle, only the soonest-to- is less than the maximum allowable limit (i.e., (rn 2 s)/
2). This permits checking for neighbor list expiration atoccur event (i.e., core, bond, or square-well) is stored in

the time vector. An additional vector of length N stores user prescribed intervals (i.e., every 100 collisions) rather
than at each time step, but it requires several trial runs inan integer associated with the collision type (i.e., core,

bond, or square-well) and generalizes the single-event order to select the appropriate checking interval which
maximizes speed but does not permit particle overlap.scheduling technique for any number of different event

types. For example, Chapela and Martinez-Casas [10, 11] As noted previously in the discussion on single-event
time lists, the search for possible collision partners is di-used a series of discontinuities in the form of a stair-step

potential to mimic a Lennard-Jones potential with a DMD vided in two routines (uplist and dnlist) in order to
eliminate double checking of ij pairs. Our neighbor listsalgorithm. In this case, many different event types must

be scheduled as a particle moves into and out of the attrac- are organized in a similar fashion. A doubly constructed
neighbor list is employed wherein the neighbors for a giventive well.
particle are placed in two vectors: (1) neighbors with an
index .i (upnab) and (2) neighbors with an index ,i

B. Neighbor Lists
(dnnab). A doubly constructed neighbor list does not in-
crease the number of calculations for list construction, butSince only particles which are in close proximity are

destined to collide, the effort to update time lists can be it does add a slight overhead when sorting neighbors into
each list. The following FORTRAN code illustrates onereduced by restricting the search for future collision part-
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method for neighbor list construction. Neighbors are col- Doubly constructed neighbor lists also enhance the effi-
ciency of deciding which particles besides i and j need to belected in two vectors named upnab and dnnab each of

length NNn , where Nn is the maximum number (nnab) of updated in the single-event scheduling method described
earlier. After each step in the simulation, time lists mustneighbors for the chosen cutoff radius. The variables nup

and ndown dictate the location for the particle in the ‘‘up’’ be refreshed for the colliding particles (i, j) and for any
particles that would have collided with i or j had the trajec-and ‘‘down’’ neighbor lists, respectively, while the two vec-

tors nnabup and nnabdn keep track of the total number tories of i and j not changed. Any particle destined to
collide with i would necessarily appear in the ‘‘down’’of neighbors in the upnab and dnnab lists.
neighbor list for i due to the fact that the collision partner

Initialize pointer into upnab vector for any particle always has a higher index number. To
nup=0 locate such particles, each down neighbor is checked for
do 300 i = 1, N - 1 a scheduled event with i and then added to a temporary

Calculate separations between vector for later updating if such an event is found. The
particle i and particles i 1 1, N process is then repeated for particle j. The following code

do 199 j = i + 1, N illustrates this. The variables kstart and kend are
rxij = rx(i) - rx(j) pointers to the first and last position of the dnnab vector
ryij = ry(i) - ry(j) where the down neighbors of i (then j) reside. The ncnt
rzij = rz(i) - rz(j) particles which need updating are packed into a single

Apply periodic boundary conditions vector nupdat.
rxij = rxij - dnint(rxij)
ryij = ryij - dnint(ryij) Check the down neighbors of i
rzij = rzij - dnint(rzij) kstart = (i-1)*nnab + 1
rsq(j) = rxij**2 + ryij**2 kend = kstart + nnabdn(i) - 1

& 1 rzij**2 do 449 kk=kstart, kend
199 continue k = dnnab(kk)

if(partnr(k) .eq. i)thenSort neighbors into two vectors (upnab, dnnab)
ncnt = ncnt + 1based on cutoff rn
nupdat(ncnt) = knnabup(i) = nup + 1

end ifdo 299 j = i + 1, N
449 continueif (rsq(j) .lt. rcut)then

This is a neighbor so insert into lists Check the down neighbors of j
nup = nup + 1 kstart = (i-1)*nnab + 1
upnab(nup) = j kend = kstart + nnabdn(j) - 1
nnabdn(j) = nnabdn(j) + 1 do 450 kk=kstart, kend
ndown = (i-1)*nnab + nnabdn(j) k = dnnab(kk)
dnnab(ndown)= i if(partnr(k) .eq. j)then

end if ncnt = ncnt + 1
299 continue nupdat(ncnt) = k
300 continue end if

nnabup(n) = nup + 1 450 continue

Sequential packing of neighbors into the upnab vector is
The next step is to call the appropriate routine to updatemade possible by the upward construction of the do loop
collision times (i.e, uplist) using values from the nupdat(i.e., loop 299 runs from i 1 1 to N). Since the number of
vector. It should be noted that particle i is included in‘‘down’’ neighbors for i is unknown at the beginning, the
nupdat by loop 450 because i is always less than j andinsertion position (ndown) into the dnnab vector must
will necessarily appear as a down neighbor of j.be computed. Furthermore, if the maximum number of

expected neighbors (nnab) for a given rn is 50 then dnnab
C. Link Lists

must be dimensioned to at least 50N to inhibit array bound-
ary crossing for the last particle (N). With the optimum Further efficiency can be gained when the system size

exceeds several hundred particles by implementing linkneighbor list size of 30–35 neighbors, a dimension of 50N
for the dnnab should be adequate. The double loop con- lists [14, 15] to reduce the N2/2 computations for neighbor

list construction/renewal. The link list method divides thestruction (loops 199 and 299) allows for vectorization of the
first loop and is generally faster for optimizing compilers. primary simulation cell into M 3 M 3 M smaller subcells
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uling method. In this case the circular lists are eliminated
and only one event per particle (the soonest-to-occur) is
scheduled in the tree. Tree maintenance is also faster be-
cause the tree size is substantially smaller in the single-
event algorithm (N vs NNe). Also, fewer events must be
deleted or added at each time step in the single-event
method since only one event is scheduled per particle.
Even though the search for the next event is reduced by
application of a binary tree, the overhead associated with

FIG. 2. Two-dimensional illustration of subcells for link lists used in insertions and deletions from the tree does increase. Never-
neighbor list construction. The lightly shaded particles are neighbors for theless, we obtain a speedup of 15–25% when applying a
the darkly shaded particle since they lie within the cutoff radius (dashed simple binary tree to the single-event scheduling algorithm.circle). Neighbor lists are constructed by searching the nine subcells (2D)

A binary tree is structured to enable easy location offor possible neighbors.
the next event in the system, facilitate scheduling of future
events, and allow removal of cancelled events. A binary
tree stores events in a set of nodes, where each node con-

and creates a list of the particles in each subcell. Neighbor tains a link to its predecessor and two successors. The
list construction is restricted to searching the 27 subcells successor events are organized such that the left branch
centered around the particle of interest. The subcell length has a time less than its predecessor and the right branch
ls (5L/M) must be larger than the neighbor cutoff distance has a time greater than its predecessor. Either one of the
(rn) to avoid missing possible neighbors. A two-dimen- successor events may be a null event indicating termination
sional analog of this procedure is shown in Fig. 2. Link-list for that branch of the tree. Each node contains an event
construction is an order N computation involving minimal time and pointers to the left, right, and previous nodes.
floating-point work. For Ns particles per subcell, neighbor The left-most node of the tree contains the minimum time
list formation is reduced from N2/2 to 27NsN/2 computa- for all events in the tree. In short, the binary tree is a link-
tions. Our results suggest that the optimal subcell size list approach applied to the time list and provides a quick
contains approximately eight particles for hard-chain simu- way to search the time list. For a single-event time list, the
lations. The combination link list/neighbor list technique search for the minimum time involves N comparisons; the
resembles the subcell method of Erpenbeck and Wood binary tree reduces this search to log2 N comparisons if
[12] without cell-crossing events to track particle displace- the events are sufficiently random to produce a well-bal-
ments. anced tree.

Figure 3 gives an example of a binary tree constructed
D. Scheduling

from a particular time list. The nodes which form the tree
are connected by three pointers: right node noder, leftThe search for the minimum value in the time lists poses

significant computational work for large systems. A node nodel, and previous node nodep. Any particular
tree structure is not unique, but rather, depends on thestraightforward linear search through the single-event time

list requires an order N operation to locate the next event order in which events are added. In this case, tree nodes
are inserted by moving sequentially down the time list.in the system. An improved method for searching lists is

available in the form of a binary tree [16, 17]. The binary Since only one event per particle is scheduled, the node
number corresponds to the particle index. The root nodetree method was first applied to DMD by Rapaport [18]

who developed a very efficient and elegant binary tree for provides an entry point into the tree and is not used for
event storage. The tree is constructed as follows. The eventthe multiple-event time lists. The binary tree algorithm

for multiple-event scheduling is complex and includes two time for particle 1 is inserted as the first branch because
particle 1 is the first to be scheduled. The second time fromcircular lists with two pointers each [18] in order to facili-

tate the cancellation of events when a particle collides. the list is inserted to the right of the first node (since t2 .
t1) by setting noder(1)52 and nodep(2)51. The thirdBecause the velocity changes for the colliding pair, a colli-

sion invalidates all scheduled events associated with the particle in the list (third node) is inserted by starting at
the top of the list, moving right (since t3 . t1), then movingcolliding particles i and j. The circular lists facilitate loca-

tion of all events associated with the colliding particles. left (since t3 , t2). The tree pointers are then updated as
nodel(2)53 and nodep(3)52. Subsequent events areThe Rapaport binary tree is constructed in conjunction

with a subcell division of the primary simulation cell so similarly scheduled by starting at the first node and compar-
ing event times with each existing node and moving down-that a subcell crossing is the entry point into the tree.

Substantial simplification of the Rapaport implementa- ward to the left or right depending on the relative times
to find the appropriate insertion position. In this manner,tion of the binary tree is possible in the single-event sched-
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if TNEW < TEVENT(inpos) then go left.
if(tnew .le. coltim(inpos))then

if(nodel(inpos) .ne. 0)then
inpos = nodel(inpos)

else
nodel(inpos) = newnod
nfound = 1

end if
if TNEW > TEVENT(inpos) then go right.

else
if(noder(inpos) .ne. 0)then

inpos=noder(inpos)
else

noder(inpos) = newnod
nfound = 1

end if
end if

end doFIG. 3. Binary tree structure for event scheduling. The tree is con-
structed from the time list at the top. Italicized numbers represent the Insertion position inpos now equals the
particle index as well as the node number. The next event involves particle

position preceding where the event was added,9. A zero in the pointer position represents termination of that branch.
so set the previous node to inpos.

nodep(newnod) = inpos
And since the new node is a branch end

any vertical plane through the tree will have smaller event nodel(newnod) = 0
times on the left than on the right. The minimum of all noder(newnod) = 0
event times (t9 in this case) is located at the leftmost posi-

returntion in the tree.
endThe following routines prepare a simplified binary tree

for the single-event scheduling algorithm. A common
Node deletion in the single-event scheduling algorithm isblock (tree) is used for storing the tree pointers while

straightforward; since only one event is stored in the tree forevent times for each node are stored in the time list
each particle, only one deletion per particle is necessary forvector coltim which is also available through a common
tree renewal. This is important since node deletion incursblock. The routine addtree receives a particle index
substantial overhead in any binary tree algorithm. The pri-number and schedules the associated event by moving
mary objective of a node deletion routine is to identify whichleft and right through the tree to find the insertion
of the deleted node’s successors should be linked to the de-position (inpos).
letednode’spredecessor.Thefourseparatesituationswhich
can emerge for a node deletion are represented in Fig. 4subroutine addtree(newnod)
(adapted from [18]). In this example, D represents the de-dimension nodep(0:N),nodel(0:N)
leted node, P represents the predecessor node, and S repre-dimension noder(0:N)
sents the successor node. In case I, the deleted node is fol-common /tree/ nodep,nodel,noder
lowed on the right branch by a null event and on the leftCommon block with event times here.
branch by either another event or a null event. In this case,Put the newnod into the binary tree
the predecessor node (P) should be linked to the left branchbased on its time tnew
following the deleted node (D). In case II, the deleted nodetnew = coltim(newnod)
contains a null event on the left branch and a nonnull eventIf the tree is empty, put this node first
on the right branch. In this case, the predecessor nodeinpos = 0
should be linked to the right branch of the deleted event. Ininpos = noder(0)
case III, the deleted node contains nonnull events on bothnfound = 0
the left and right branches, while the right branch contains
a null left branch indicating that the right branch is the small-Otherwise, search through all branches to find

the proper insertion position (inpos). est event time for that particular branch. Since the event
time on the right is larger than the event time on the left, theThe right branch will always have a larger time.

do while(nfound .eq. 0) right branch is designated as the successor node. In this case,
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Case I
is = nodel(id)

else
Case II

if(nodel(id) .eq. 0)then
is = noder(id)

else
if(nodel(noder(id)) .eq. 0)then

Case III
is = noder(id)

else
Case IV

is = nodel(noder(id))
do while(nodel(is) .ne. 0)
is = nodel(is)

end do
Relink the pointers

nodep(noder(is)) = nodep(is)
nodel(nodep(is)) = noder(is)
nodep(noder(id)) = is
noder(is) = noder(id)

end if
nodep(nodel(id)) = is
nodel(is) = nodel(id)

end if
end if

FIG. 4. Schematic of tree pointer manipulation for node deletion in Set the previous node pointer
four distinct cases (case I shows two subcases). The nodes labeled D, P, ip = nodep(id)
and S represent deleted, predecessor, and successor nodes, respectively.

nodep(is) = ipLines marked by an X represent deleted pointers while dashed lines
indicate replacement pointers. Adapted from Ref. [18]. if(nodel(ip) .eq. id)then

nodel(ip) = is
else
noder(ip) = is

the deleted node is simply replaced by the right branch. Case end if
IV is the most complicated of the possible scenarios and also return
the most prevalent for any sizeable tree structure. In this end
case, the right branch of the deleted node has a nonnull left
branch which is searched for the minimum event by moving The last routine nextev locates the minimum time in
to the leftmost node of that branch. This event is assigned the tree by searching down the left most branch and re-
as the successor and links are formed as shown in Fig. 4. turning the particle index associated with the next event.

The routine detree receives a particle index number This routine is called once at each iteration to determine
and deletes the associated event by connecting pointers as the next event or colliding pair.
prescribed by Fig. 4. This routine is called after each update

subroutine nextev(i)of the time list so that cancelled events can be removed.
dimension nodep(0:n),nodel(0:n)The routine addtree is called afterwards to reschedule
dimension noder(0:n)the new time.
common /tree/ nodep,nodel,noder

Find the minimum event
i=noder(0)subroutine detree(id)

dimension nodep(0:N),nodel(0:N) do while(nodel(i) .ne. 0)
i = nodel(i)dimension noder(0:N)

common /tree/ nodep,nodel,noder end do
returnDelete a node from the tree and reconnect pointers.

if(noder(id) .eq. 0)then end
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Successive collisions by the same particle between posi-
tional updates are treated in the same manner since the
rewound position of the particle will always give the correct
location at the next update regardless of the number of
events or collisions experienced.

While the use of false positioning reduces position up-
dating to discrete time intervals (e.g., every N/2 events) it
adds work to routines that search for possible interactions.
Particles must be temporarily placed in their true positions
in order to determine possible interactions correctly. The
additional work depends on the number of neighbors, but
it is independent of N. When searching for possible interac-

FIG. 5. Changes for particles i and j in false positioning before and tions, the true separation between particles can be deter-after a collision. (a) False and real positions are the same at t 5 tu . (b)
mined in relative coordinates asParticles undergo a collision at time ti 1 tu and change velocity. (c)

Particles are rewound in the false frame based on new velocities. (d)
rij 5 sij 1 vij(t 2 tu). (5)Particles arrive at their correct locations at the next update t 5 t9u .

This computation must be added to any routine which
searches for possible interactions with the Nn neighbors of

E. False Positioning any particle. From our earlier discussion we noted that
this occurs for approximately three particles at each timeAnother efficiency technique introduced by Erpenbeck
step, so false positioning eliminates N computations inand Wood [12] consists of updating particle positions at
favor of 3Nn computations, making the position updateprescribed intervals rather than at each time step. This
calculation independent of system size. The following sec-procedure reduces computational work associated with ad-
tion of code illustrates the temporary placement of parti-vancing all particles in time after each event. Efficiency is
cles in their true positions in order to determine possibleimproved because most particles move in discrete time
interactions correctly. TNEXT is the time since the particlesteps along a linear trajectory as the simulation progresses.
positions were updated and is equal to t 2 tu .The method delays position updates for all particles,

thereby, eliminating an order N calculation at each time vxij = vx(i) - vx(j)
step. This is accomplished by defining the false position si vyij = vy(i) - vy(j)
for particle i as vzij = vz(i) - vz(j)

rxij = rx(i) - rx(j)
si 5 ri 2 vi(t 2 tu), (3) ryij = ry(i) - ry(j)

rzij = rz(i) - rz(j)
where tu represents the time of the last position update, t Extra work for false positioning
is the current elapsed simulation time, and ri is the true rxij = rxij + vxij*tnext
position of particle i at time t. For t 5 tu the false positions ryij = ryij + vyij*tnext
are identical to the true positions. The false position of rzij = rzij + vzij*tnext
a particle remains constant between updates except at a

In contrast to the use of local time variables for eachcollision where a new false position is assigned such that
particle [18], which would yield similar efficiencies, falsethe correct true position will be achieved at the next up-
positioning does not require extra storage. Position up-date. This is accomplished by rewinding the particle’s false
dates should be performed at the same time interval asposition based on its postcollisional velocity as illustrated
checks for neighbor list expiration to minimize the amountin Figs. 5a–d. The two colliding particles (a) are placed
of work associated with false positioning. Although longertemporarily in their true positions for the calculation of
delays in position updating improve algorithm efficiency,their new velocities (b). Based on their new velocities,
they increase roundoff error in collision time calculationsthe particles move backwards (relative to their colliding
and decrease momentum conservation.positions) by the amount of time since the last update t 2

tu (c). This movement will place the particles in a new false
V. NUMERICAL RESULTSposition such that the correct position will be achieved at

the next update (d). After a collision, the new position in
A. Precisionthe false coordinate frame for particle i is

Computer simulation is only exact to the degree of preci-
sion afforded by the computer. A discriminating check onsi(after) 5 si(before) 2 Dvcoll(t 2 tu). (4)
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precision is to run the simulation for a number of time
steps, reverse the velocities, and run the simulation (back-
wards) for the same number of time steps. The initial and
final configurations should be the same. The difference
between the final and initial configurations is a measure
of mathematical precision. The effect of loss of accuracy
in the physical properties that one wishes to calculate is
not easily measured. The good agreement found by Alder
[19] between MD and MC results for the equation of state
of hard-sphere systems indicates that trajectory inaccuracy
introduces no bias into equilibrium properties.

One source of inaccuracy arises in the calculation of
event times which involves the solution to a quadratic
equation. For a general quadratic equation (ax2 1 bx 1
c 5 0) the usual approach for determination of the two
roots x1 and x2 is

x1 5
2b 1 Ïb2 2 4ac

2a
,

(6)

FIG. 6. Performance comparison between single-event and multiple-x2 5
2b 2 Ïb2 2 4ac

2a
.

event scheduling algorithms for chain fluids at a volume fraction of 0.45.
All runs were performed on a DEC 3000/400 workstation. In each case
there are 32 chains while the chain length varies from 4 to 192. Percentage

However, if a or c are small relative to b and b is positive, of events which correspond to bond-extensions for each chain length is
then the calculation of x1 will involve the subtraction of shown on the second ordinate.
two nearly equal quantities which could give an inaccurate
root. For example, in Eq. (1) the value of (r2

ij 2 s 2) could
be small, especially for bond-extension events in the Rapa- B. Performance for Single- and Multiple-Event Methods
port model. An alternative solution for the roots [20, 7]

We have coded both single-event and multiple-eventin Eq. (6) is
scheduling algorithms in order to evaluate the advantages
of each approach. Both algorithms are designed with hard

x1 5 d/a, x2 5 c/d, (7) or square-well chain simulations as the objective but are
sufficiently modular to allow application to any model us-
ing discontinuous potentials. The single-event schedulingwhere
examples use a combination of neighbor lists and link lists
for interaction consideration and a simple binary tree for

d ; 2As[b 1 sgn(b)Ïb2 2 4ac], (8) event scheduling. The multiple-event scheduling examples
use the subcell method for interaction calculation with

where sgn(b) has a value 1 for positive b and 21 for nega- approximately one particle per subcell and a binary tree
tive b. For example, in Eq. (1) bij is less than zero for any with circular lists [18] for event scheduling and deletion.
colliding pair and the solution is given by The single-event scheduling examples use a neighbor list

of approximately 30 particles and link lists with 8–10 parti-
cles per subcell from which neighbor lists are constructed.

tij 5
(r2

ij 2 s 2)

Ïb2
ij 2 v2

ij(r2
ij 2 s 2) 2 bij

. (9) Both algorithms use false positioning and the minimum
image convention [21]. Periodic boundary conditions are
only employed when calculating particle separations, so
true particle positions may be outside the primary simula-Since bij is less than zero, the denominator will involve an

addition rather than subtraction. In the bond-extension tion cell.
Figure 6 compares the performance of the single- andcase bij can be either positive or negative, and the algorithm

must include extra logic to decide which of the two roots multiple-event scheduling codes for hard-chain fluids, mea-
sured in millions of events per CPU hour, as a function ofis appropriate, based on the sign of bij . This technique

avoids the subtraction of two similar numbers and im- the number of chain segments N. These benchmarks were
performed on a DEC 3000/400 workstation operating atproves accuracy in the collision-time calculation.
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events scheduled in the multiple-event method provide
enough savings in particle interaction calculations to offset
the overhead associated with extra event deletions at each
time step. For comparison, results for the code F.10 from
Allen and Tildesley [6] are also shown. TheF.10 algorithm
implements a linear time list for single-event scheduling
and no neighbor lists. The combination of neighbor lists,
link lists, and a binary tree provides almost an order of
magnitude increase in performance over the straightfor-
ward DMD implementation of F.10. In summary, the
single-event algorithm is best suited for systems with low
diffusivity where rapid velocity changes occur such as in
the Rapaport chain model. The multiple-event method is
best suited for systems with high diffusivity where consider-
able displacement may occur before particle velocities
change.

Figure 8 compares the performance of the single- and
multiple-event scheduling codes for chain fluids, measured
in millions of events per CPU hour, as a function of the

FIG. 7. Performance comparison between single-event and multiple- number of chain segments N. These benchmarks were per-
event scheduling algorithms for the hard-sphere fluid at a volume fraction

formed on a SGI Challenge XL with a R4400 CPU op-of 0.45. Algorithm performance for code F.10 from Ref. [6] for 512
erating at 200 MHz using 64-bit arithmetic. This machine isparticles is also given.
equipped with 32K of on-chip cache and 4MB of secondary
cache. In all cases the single-event scheduling is faster than
multiple-event scheduling with an increase from 16% to133 MHz using 64-bit arithmetic. This machine is equipped

with 16K of on-chip cache and 512K of secondary cache. 25%. The DEC workstation has better performance for
small systems (N # 2048) while the SGI computer hasAll chain fluids use the Rapaport model with a bond factor

of 0.1 at a volume fraction of 0.45. Memory requirements better performance for the larger systems. The cache and
memory structures on the two machines may account forare approximately equivalent for the two algorithms. The

system size ranges from 128 segments for the 4-mer fluid
to 6144 segments for the 192-mer fluid. In order to make
a direct comparison between the two algorithms, subcell-
crossing events in the multiple-event algorithm are not
included in performance ratings. In all cases the single-
event scheduling is faster than multiple-event scheduling
by as much as 75%. The percentage of events which consti-
tute the bond vibration are also shown on the second ordi-
nate of Fig. 6. For a chain-like fluid, or any molecular
fluid, the bond vibration is often the limiting time step in
molecular dynamics simulations. The short time-step for
bond events causes rapid changes in particle velocities and,
therefore, a higher probability that events will expire be-
fore they can be used in the multiple-event method. The
resulting increase in overhead created by multiple dele-
tions from the binary tree degrades the performance of
the multiple-event algorithm for molecular fluids.

Figure 7 compares the performance of the single- and
multiple-event scheduling codes for hard-sphere fluids
measured in millions of events per CPU hour as a function
of the number of particles N. System sizes for the hard-
sphere fluids are the same as for the chain fluids in Fig.

FIG. 8. Performance comparison between single-event and multiple-
6. The advantage that single-event scheduling offers for event scheduling algorithms for chain fluids at a volume fraction of 0.45.
chain fluids is diminished for hard-sphere fluids. The two All runs were performed on a SGI Challenge XL computer. In each case

there are 32 chains while the chain length varies from 4 to 192.methods have similar performance because additional
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the difference in performance of the larger systems, noting
that the SGI computer has a much larger secondary cache.

VI. EXAMPLES

Recent advances in the speed of serial processors cou-
pled with low cost workstations makes the DMD method
attractive for problems involving large time scales. Multi-
billion time step simulations can be routinely carried out
within 100 h of dedicated CPU time on a modest worksta-
tion. The following sections highlight the utility of the
DMD method in general and the single-event algorithm
in particular. The examples focus on current areas of inter-
est in polymer physics concerning transport and thermody-
namic properties. In many instances, the DMD algorithm
is faster than continuous-space Monte Carlo techniques
for a given degree of accuracy. An efficient DMD algo-
rithm along with high speed serial computers permits multi-
billion time step simulations which are about two orders FIG. 9. Simulation results for the reduced self-diffusion coefficient
of magnitude longer than the corresponding simulation of scaled by chain length versus chain length for three volume fractions.
continuous potential models on vector computers. Error bars represent one standard deviation.

A. Dynamics of Entangled Chains

Relative to simple Newtonian liquids, entangled poly- the experimentally observed molecular weight dependen-
cies are D p n22 and h p n3.4.mer melts contain a rich variety of topological and ex-

cluded-volume interactions which create a spectrum of re- The single-event scheduling algorithm has been used
to investigate the scaling of the diffusion coefficient forlaxation times. Polymer dynamics are most often discussed

in terms of two models: (1) Rouse [22] dynamics for short, entangled chains [26, 27]. Simulations were performed on
systems containing 32 chains of length n 5 8, 16, 32, 64,un-entangled chains, and (2) reptation [23] dynamics for

highly entangled chains. In the Rouse model, the fluid 96, 192 at volume fractions ranging from 0.3 to 0.45. Self-
diffusion coefficients were calculated in the molecular (cen-surrounding a chain relaxes rapidly providing a stochastic

background for a chain’s motion. In the reptation model, ter of mass) reference frame. Long simulation runs are
essential to probe the slow relaxations which are imposedthe surrounding fluid relaxes on an infinite time scale, thus

presenting fixed obstacles to a chain’s motion. by topological constraints for entangled chain fluids. Simu-
lation lengths ranged from 108 collisions for the 8-mer fluidThe tube model of Doi and Edwards [24] is perhaps the

most prominent implementation of the reptation concept. to 2 3 1010 collisions for the 192-mer fluid; this is about
two orders of magnitude longer in terms of collisions thanIn this approach, topological interactions are treated as

an effective field of obstacles forming a virtual tube that any previously reported DMD simulation. These simula-
tions were performed on a local cluster of low-cost DECrestricts chain motion. Atomic displacements larger than

the characteristic dimension imposed by this field, the so- workstations in less than 3000 CPU hours for a single
density. Furthermore, a workstation cluster allowed multi-called tube diameter, occur predominantly along the chain

contour. For displacements smaller than the tube diameter, ple chain lengths (six total) and densities (three total) to
be studied simultaneously.segment motion is restricted only by chain connectivity

and should be characterized by Rouse dynamics. Since the Figure 9 shows the scaling of the reduced self-diffusion
coefficient with chain length. We observe a crossover fromlongest relaxation time in the Rouse model is proportional

to the chain length squared, the tube model predicts that Rouse behavior (D p n21, solid line) to entangled behavior
(D p n22, dashed line). The critical chain lengths at whichthe self-diffusion, D, and shear viscosity, h, of short chains

scale with molecular weight as D p n21 and h p n in crossover occurs decreases with increasing volume frac-
tion. The data indicate an entanglement length which isagreement with experiments on short chain melts [25].

When chain length exceeds a critical value, the so-called less than 50 for both the 0.4 and 0.45 volume fractions in
agreement with results for a Lennard-Jones based model‘‘entanglement’’ length, the tube model predicts that the

molecular weight scaling for self-diffusion and shear viscos- [28]. These results suggest a scaling of D p n22 for the
longer chains.ity changes to D p n22 and h p n3. For entangled polymers,
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those predicted by the GF and GFD theories [29]. The
compressibility factors calculated using the DMD method
agree well with the compressibility factors calculated from
MC simulation [31] and with the generalized Flory–Dimer
theory prediction. The advantages of the DMD method
over the MC method are: (1) a higher accuracy in Z is
obtained for a given CPU time allocation and (2) the
DMD method does not contain uncertainties in the
system density.

C. Double-Tethered Hard Chains at Interfaces

A thin film can be formed on a surface by grafting the
ends of polymer molecules to the surface. Such thin poly-
meric films are of interest in technological applications
requiring precise control over adhesion and stabilization
of surfaces. The conformational and dynamic properties
of single-tethered chains (one end grafted to the surface)
have been investigated in numerous theoretical [32–34]

FIG. 10. Block copolymer compressibility factor vs packing fraction and computer simulation studies [35–37]. The conforma-
for 4, 8, 16, and 32 mers. Each block copolymer consists of a sequence tional properties of double-tethered chains (both ends
of component A followed by component B with a diameter ratio

grafted to the surface) have been investigated by Monte(sA/sB) of 2 while the fraction of component A on the chains is 0.5. Points
Carlo simulations [38, 39] using chains confined to a cubicare the results of DMD simulations and the curves are the predictions of

the GF and GFD equations of state. Error bars are smaller than the lattice. More recently, Gulati et al. [40] have used the sin-
data point. gle-event DMD algorithm to study an off-lattice model of

double-tethered hard chain fluids in the presence of an
impenetrable wall.

B. Heteronuclear Chains
The algorithm used to simulate double-tethered chains

is essentially the same as the DMD method describedCopolymers are heteronuclear chains composed of two
or more distinct monomer types which differ in either size earlier, with slight modifications. The primary simulation

box consists of an infinite parallelepiped in the z-directionor strength of molecular interactions. In order to under-
stand the molecular basis for the macroscopic behavior with a hard surface at z 5 0. Periodic boundaries are

employed along the x and y directions but not alongof such fluids, heteronuclear polymeric fluids are often
modeled as fluids containing chains of tangent hard spheres the z direction. For the double-tethered case, each chain

end (Na total) is anchored to the hard surface. Anchorsof different sizes. Simulation studies can be used to test
the accuracy of theoretical predictions based on this model. are attached by a small string in accord with the Rapaport

model. The effect of surface anchor density (ra 5 Na/A),Gulati et al. [29] have applied the DMD method to
calculate the compressibility factors of fluids containing anchor mobility, and chain length (n) on the structural,

conformational, and dynamic properties of systems con-block, alternating, and random copolymers modeled as
chains of tangent hard spheres of different sizes. The algo- taining chains of 20, 40, and 80 segments at surface

anchor densities ranging from 0.01–0.48 is studied. Therithm used is a modification of the DMD method described
earlier in which segments of different sizes have masses algorithm generated approximately 18 million collisions

per CPU hour on a DEC 3000/300LX for a systemproportional to their volume. The equations of motion are
modified appropriately to incorporate the mass and size containing 500 segments.

The segment density profiles away from the wall aredependence. Compressibility factors are calculated from
the collisional virial. This method is significantly faster parabolic at intermediate densities and agree with the self-

consistent field [41, 32] theories for polymer brushes. How-and more accurate than its MC counterpart for calculating
compressibility factors. ever, at high surface densities and short chain lengths, the

segment density profiles oscillate indicating the presenceThe model copolymer systems studied have block,
alternating, and random geometries with segment diame- of a layered structure. This phenomenon is not as promi-

nent in lattice simulations where excluded volume interac-ter ratios ranging from 0.5–4.0 and varying chain lengths.
Each of the systems is simulated over a range of volume tions cannot be treated explicitly. From the density profiles,

chains are stretched normal to the surface at high densityfractions from 0.09–0.5. Figure 10 shows a comparison
between the calculated compressibility factors Z and and have an inverted mushroom shape at low density.
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computational scientist will always desire to study larger
systems and longer times, both of which are facilitated by
discontinuous molecular dynamics.
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